top of page

*Extension: For students looking for more calculus work, the suggested online resources are from the University of Waterloo's CEMC (Centre for Education in Mathematics and Computing) Courseware, UBC, and SFU.

​

https://courseware.cemc.uwaterloo.ca/11

​

The units are presented in an interactive manner and can be used to review topics that have been covered as well as learn new material.

​

https://personal.math.ubc.ca/~CLP/

​

https://www.sfu.ca/math-coursenotes/Math%20157%20Course%20Notes/frontmatter-1.html

​

https://www.sfu.ca/math-coursenotes/Math%20158%20Course%20Notes/frontmatter-1.html

​

​

Unit 4: Extreme Values and Optimization Problems

Suggested Practice Questions

​

Section 4-1 (Page 170): # 3 abcd, 4 abceg

​

Section 4-2 (Page 177): # 3 aceik, 4 egi

​

Section 4-3 (Page 182): # 1 ac, 3 ac, 4

​

Section 4-4 (Page 189): # 5, 6, 8, 10 (use the distance formula)

 

Review Part 1 (Page 196): # 1 (omit c), 2, 3 abc, 5, 6

Review Part 2 (Page 199): # 1, 2 (textbook has error, absolute minimum should be  -31/27), 3, 4

​​

​

Unit 3: The Derivative Part Two

Suggested Practice Questions

​

Section 2-5 (Page 95): # 1 ace, 2 bdf (no need to determine domains), 3b, 6 [answer should be (0,0) and (-5, -5)], 7

​

Section 2-6 (Page 102): # 1 acegik, 6 ace, 8, 9

​

Section 2-7 (Page 107): # 1 ef, 2 cd, 3 cd, 5a, 7b, 9

​

Section 2-8 (Page 111): # 1 ace, 2a, 4, 7ab, 8 [Hint. Start with the standard form (not vertex form) of a quadratic function.]
 

Review (Page 112): # 4 fghijkl, 7 abc, 9 def

                  (Page 115): # 2 bc, 3, 4

​

​

Unit 2: The Derivative Part One

Suggested Practice Questions

 

Section 2-1 (Page 76): # 10, 11 (no need to determine domains), 12 cd [for these questions you can replace dy/dx with f '(x)]

​

Section 2-2 (Page 83): # 1 fghij, 2, 3 ace, 4, 7, 8, 9

​

Section 2-3 (Page 88): # 1 ace, 2 ac (no need to determine domains), 3 ac, 6, 7, 9

​

Section 2-4 (Page 92): # 2 aceg, 3 ace, 4, 5, 6 [ (fg)'(2) means the derivative of {f(x)}{(g(x)} evaluated at x =2 ]

 

Review (Page 112): # 1, 3, 4 abcde, 9 abc, 11, 12, 13

​

Unit 1: Limits and Tangent Lines

Suggested Practice Questions
 

Section 1-1 (Page 9): # 7 a(v) bc, 8 a(iv) bc, 9 a(v) bc, 10 a(viii) bc, 12

​

Section 1-2 (Page 19): # 4, 5, 6 abcdef

​

Section 1-3 (Page 28): # 5, 6, 7, 9ab

​

Section 1-4 (Page 35): # 7a (i to v), 8

​​

​​​

​

bottom of page